A closed modified V-shaped uniplanar triple band ACS fed antenna for wireless applications

Author:

Kumar Anuj,Jindal Anukul,Singh Apurva,Roy Reshma,Kumar Om Prakash,Ali Tanweer

Abstract

In the proposed paper, a uniplanar asymmetric coplanar strip (ACS) fed antenna with closed V-shaped radiating patch of size  printed on FR4 substrate with loss tangent ( =0.02, height (h)=1.6mm, and dielectric constant of 4.4 covering WiMAX, X-band and WLAN applications is presented. The proposed closed V-shaped radiating patch is formed by joning two rectangular stubs. The resultant shape of the radiating patch is obtained by adding rectangular strips to feed line until desired multiband results are achieved.  The advantage of this structure is that it forms simple configuration as well as helps the overall antenna in attaining three distinict useful frequency band with good impedance matching for S11-10 dB criteria. The proposed ACS fed antenna operates at 3.1 (WiMAX), 5.0 (WLAN) and 9.9 (X-band) GHz with impedance bandwidth ranging from 2.7-3.9 GHz, 4.4-5.5 GHz and 9.5-10.3 GHz in simulation. Under measurement the proposed antenna shows multiband phenomenon at 3.2, 5.3 and 9.7 GHz with impedance bandwidth ranging from 2.8-3.7 GHz, 4.6-5.4 GHz and 9.4-10 GHz, respectively. The antenna exhibits simulated gain of 2.51, 1.18 and 1.96 dB at the corresponding frequency bands of 3.1, 5.0 and 9.9 GHz. The key parameters of the antenna like length and width of the multi-branched strips are optimized to get the multiband operation. The deisign simulation is carried out in Ansys HFSS (High frequency Simulation Software) where different characteristics of the proposed antenna are investigated. The evolution and optimization process is dealt in detail with the help of S11, VSWR, current distributions, radiation patterns and gain.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3