Multi-wavelet level comparison on compressive sensing for MRI image reconstruction

Author:

Irawati Indrarini Dyah,Hadiyoso Sugondo,Hariyani Yuli Sun

Abstract

In this study, we proposed compressive sampling for MRI reconstruction based on sparse representation using multi-wavelet transformation. Comparing the performance of wavelet decomposition level, which are Level 1, Level 2, Level 3, and Level 4. We used gaussian random process to generate measurement matrix. The algorithm used to reconstruct the image is . The experimental results showed that the use of wavelet multi-level can generate higher compression ratio but requires a longer processing time. MRI reconstruction results based on the parameters of the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM) show that the higher the level of decomposition in wavelets, the value of both decreases.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DE-Net: Detail-enhanced MR reconstruction network via global-local dependent attention;Biomedical Signal Processing and Control;2024-09

2. Analysis of Sparse Signal Sequences under Compressive Sampling Techniques for Different Measurement Matrices;Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering);2023-08

3. Compressive Sensing Technique on MRI Reconstruction—Methodical Survey;Advances in Intelligent Systems and Computing;2022

4. Compressive Sensing in Lung Cancer Images for Telemedicine Application;The 4th International Conference on Electronics, Communications and Control Engineering;2021-04-09

5. Epileptic Electroencephalogram Classification using Relative Wavelet Sub-Band Energy and Wavelet Entropy;International Journal of Engineering;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3