Machine learning-based pavement crack detection, classification, and characterization: a review

Author:

Ashraf ArselanORCID,Sophian AliORCID,Shafie Amir AkraminORCID,Gunawan Teddy SuryaORCID,Ismail Norfarah NadiaORCID

Abstract

The detection, classification, and characterization of pavement cracks are critical for maintaining safe road conditions. However, traditional manual inspection methods are slow, costly, and pose risks to inspectors. To address these issues, this article provides a comprehensive overview of state-of-the-art machine vision and machine learning-based techniques for pavement crack detection, classification, and characterization. The paper explores the process flow of these systems, including both machine learning and traditional methodologies. The paper focuses on popular artificial intelligence (AI) techniques like support vector machines (SVM) and neural networks. It underscores the significance of utilizing image processing methods for feature extraction in order to detect cracks. The paper also discusses significant advancements made through deep learning strategies. The main objectives of this research are to improve efficiency and effectiveness in pavement crack detection, reduce inspection costs, and enhance safety. Additionally, the article presents data gathering approaches, various datasets for developing road crack detection models, and compares different models to demonstrate their advantages and limitations. Finally, the paper identifies open challenges in the field and provides valuable insights for future research and development efforts. Overall, this paper highlights the potential of AI-based techniques to revolutionize pavement maintenance practices and significantly improve road safety.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3