Abstract
The signing process is a critical step that organizations take to ensure the confidentiality of their data and to safeguard it against unauthorized penetration or access. Within the last decade, offline handwritten signature research has grown in popularity as a common method for human authentication via biometric features. It is not an easy task, despite the importance of this method; the struggle in such a system stem from the inability of any individual to sign the same signature each and every time. Additionally, we are indeed interested in the dataset’s features that could affect the model's performance; thus, from extracted features from the signature images using the histogram orientation gradient (HOG) technique. In this paper, we suggested a long short-term memory (LSTM) neural network model for signature verification, with input data from the USTig and CEDAR datasets. Our model’s predictive ability is quite outstanding: The classification accuracy efficiency LSTM for USTig was 92.4% with a run-time of 1.67 seconds and 87.7% for CEDAR with a run-time of 2.98 seconds. Our proposed method outperforms other offline signature verification approaches such as K-nearest neighbour (KNN), support vector machine (SVM), convolution neural network (CNN), speeded-up robust features (SURF), and Harris in terms of accuracy.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献