Deep learning techniques for physical abuse detection

Author:

S Srividya M.,R Anala M,Tayal Chetan

Abstract

<span>Physical abuse has become a societal problem. Mostly children, women and old age people are vulnerable to it especially in cases of domestic violence or workplace aggression. Reporting it is in itself a challenge especially if there is a pre-existing relationship between the abuser and victim. In this paper we propose a deep learning technique for human action recognition and human pose identification to tackle physical abuse by detecting it in real time. 3D convolution neural network (CNN) architecture is built using 3D convolution feature extractors which extract both temporal and spatial data in the video. With multiple convolution layer and subsampling layer, the input video has been converted into feature vector. Human pose estimation is done using the detection of key points on the body. Using these points and tracking them from one frame to another gives spatial-temporal features to feed into neural network (NN). We present metrics to measure the accuracies of such systems where real time reporting and fault tolerance capabilities are of utmost importance. Weighted metrics shows accuracy of about 89.42% with precision of about 85.82% and thus shows the effectiveness of the system.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review on Physical Abuse Detection Techniques Using Video Surveillance Systems;Lecture Notes in Networks and Systems;2024

2. Prediction Models for Car Theft Detection Using CCTV Cameras and Machine Learning: A Systematic Review of the Literature;CSEI: International Conference on Computer Science, Electronics and Industrial Engineering (CSEI);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3