Abstract
The internet of things (IoT) is an ecosystem of connected objects that are accessible and available through the internet. This "thing" in the IoT could be a sensor such as a heart monitor, temperature, and oxygen rate in the blood. These sensors produce huge amounts of information that lead to congestion and an effect on bandwidth in the IoT network. In this paper, the proposed system is based on the Zstandard compression algorithm to compress the sensor data to minimize the amount of data transmitted from the IoT level to the fog level and decrease network overloading. The proposed system was evaluated using compression ratio, throughput, and latency time for healthcare applications. The result showed better calculation through decreased response time and increased throughput for transmitted data compared with the case of non-compressed data. It showed the compression data ratio about 70% of orignial data, maximum number of IoT sensor reads as 100, throughput is 85.43 B/ms, and fog processing delay is 6.25 ms.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献