Multi categorical of common eye disease detect using convolutional neural network: a transfer learning approach

Author:

Bitto Abu KowshirORCID,Mahmud ImranORCID

Abstract

Among the most important systems in the body is the eyes. Although their small stature, humans are unable to imagine existence without it. The human optic is safe against dust particles by a narrow layer called the conjunctiva. It prevents friction during the opening and shutting of the eye by acting as a lubricant. A cataract is an opacification of the eye's lens. There are various forms of eye problems. Because the visual system is the most important of the four sensory organs, external eye abnormalities must be detected early. The classification technique can be used in a variety of situations. A few of these uses are in the healthcare profession. We use visual geometry group (VGG-16), ResNet-50, and Inception-v3 architectures of convolutional neural networks (CNNs) to distinguish between normal eyes, conjunctivitis eyes, and cataract eyes throughout this paper. With a detection time of 485 seconds, Inception-v3 is the most accurate at detecting eye disease, with a 97.08% accuracy, ResNet-50 performs the second-highest accuracy with 95.68% with 1090 seconds and lastly, VGG-16 performs 95.48% accuracy taking the highest time of 2510 seconds to detect eye diseases.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elevating Ocular Diagnosis: Harnessing the Power of EfficientNet for Eye Disease Classification;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

2. A Novel Approach for Detection of Ocular Diseases using Deep Learning Concepts;2024 International Conference on Computing and Data Science (ICCDS);2024-04-26

3. Customer Sentiments Towards Delivery Services in Bangladesh: A Machine Learning-Based Sentiment Analysis;2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS);2024-03-08

4. MobileNet-Eye: An Efficient Transfer Learning for Eye Disease Classification;2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS);2024-03-08

5. Conjunctivitis Eye Detection Using Deep Learning - A Survey;2024 3rd International Conference for Innovation in Technology (INOCON);2024-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3