Extractive text summarization for scientific journal articles using long short-term memory and gated recurrent units

Author:

Fitrianah Devi,Jauhari Raihan Nugroho

Abstract

Along with the increasing number of scientific publications, many scientific communities must read the entire text to get the essence of information from a journal article. This will be quite inconvenient if the scientific journal article is quite long and there are more than one journals. Motivated by this problem, encourages the need for a method of text summarization that can automatically, concisely, and accurately summarize a scientific article document. The purpose of this research is to create an extractive text summarization by doing feature engineering to extract the semantic information from the original text. Comparing the long short-term memory algorithm and gated recurrent units and were used to get the most relevant sentences to be served as a summary. The results showed that both algorithms yielded relatively similar accuracy results, with gated recurrent units at 98.40% and long short-term memory at 98.68%. The evaluation method with matrix recall-oriented understudy for gisting evaluation (ROUGE) is used to evaluate the summary results. The summary results produced by the LSTM model compared to the summary results using the latent semantic analysis (LSA) method were then obtained recall values at ROUGE-1, ROUGE-2, and ROUGE-L respectively were 76.25%, 59.49%, and 72.72%.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing Deep Learning for Effective Extractive Text Summarization: A Comparative Study;2024 Intelligent Methods, Systems, and Applications (IMSA);2024-07-13

2. Recent Trends for Text Summarization in Scientific Documents;2023 IEEE 9th International Conference on Computing, Engineering and Design (ICCED);2023-11-07

3. A Comparative Study On Extractive Text Summarization Technique;2023 IEEE 11th Region 10 Humanitarian Technology Conference (R10-HTC);2023-10-16

4. State-of-the-art approach to extractive text summarization: a comprehensive review;Multimedia Tools and Applications;2023-02-16

5. Single and Multi-Documents Text Summarization Technologies for Natural Language Processing: a Systematic Review on Method and Dataset;2022 IEEE Creative Communication and Innovative Technology (ICCIT);2022-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3