Hybrid content and collaborative filtering based recommendation system for e-learning platforms

Author:

Tolety Venkata Bhanu PrasadORCID,Prasad Evani VenkateswaraORCID

Abstract

Recommendation systems, although a well-studied topic, experience several shortcomings when applied on e-learning platforms. While collaborative filtering methods have enjoyed great success in making recommendations on large scale e-commerce and social networking and observation, users of e-learning platforms have continually evolving preferences, which render collaborative filtering methods weak. On the other end of the spectrum are content-based filtering approaches. Although such methods are more suited for e-learning platforms, the primary concern is that these methods find it hard to generalize across content sources and content types. In this work, we present a hybrid recommendation system that combines the desirable characteristics of collaborative filtering, as well as from content-based filtering, for the task of recommending course content/curriculum to users of an e-learning system. Our recommendation easily incorporates changing user profiles (as learners step through course content) and also generalize across content sources (courses taught by various departments) and types. We apply our system on a real dataset comprising 111 students organized into interdisciplinary groups. Our results showcase the clear benefits that our hybrid recommendation system enjoys, showing more than 30 percentage points of improvement over conventional filtering techniques.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VIBE: A Data-Driven Approach to Career Guidance and Skill Development;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

2. Learning Resource Recommendation Method based on Meta-Path Graph Convolutional Networks;2024 5th International Conference on Computer Engineering and Application (ICCEA);2024-04-12

3. Enhancing Adaptive E-Learning with Generative AI: Expanding the Horizon Beyond Recommendation Systems;Lecture Notes in Networks and Systems;2024

4. Siamese Neural Networks Approach to Hybrid Recommender System Modeling for Fostering Economic Growth in Fashion Domain;2023 9th International Conference on Signal Processing and Intelligent Systems (ICSPIS);2023-12-14

5. A Hybrid Approach for Mobile Phone Recommendation using Content-Based and Collaborative Filtering;EAI Endorsed Transactions on Internet of Things;2023-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3