Abstract
This study develops an automated liver disease detection system using a support vector machine and random forest detection techniques. These techniques are trained on data containing the information collected from the Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between 1974 and 1984. The proposed system can detect the presence of liver disease in the test set. The random forest model is used for recursive feature elimination at the pre-processing stage and the support vector machine is trained on the optimal feature set. The experimental result shows that the proposed support vector machine (SVM) model has achieved 78.3% accuracy.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献