Breast cancer segmentation using K-means clustering and optimized region-growing technique

Author:

Abdulla Srwa Hasan,Sagheer Ali Makki,Veisi Hadi

Abstract

Breast cancer is one of the major causes of death among women, and early detection may decrease the aggressiveness of the disease. The goal of this paper is to create an automated system that can classify digital mammogram images into benign and malignant. This paper presents a new detection technique of micro-calcifications in mammogram images. An automated technique for identifying breast microcalcifications (MCs) proposed utilizing two-level segmentation processes, first crop the breast area from the image using k-means clustering, then, an optimized region growing (ORG) approach has been used, where multi-seed points and thresholds are generated optimally depending on the color values of the image pixels. Then the texture features are extracted based on Haralick definitions of texture analysis. In addition, three features (cross-correlation coefficient, pearson correlation, and average area of segmented spots) are obtained from the segmented image. Support vector machine (SVM) classifier evaluate the efficiency of the system utilizing the images from the digital database for screening mammography (DDSM) dataset. The results were obtained by utilizing 355 images for training and 85 images for testing. The proposed system's sensitivity reached up to 97.05%, the specificity obtained is 98.52%, and accuracy is 98.2%.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harnessing artificial intelligence (AI) techniques for the diagnosis of microbial disease in humans;Methods in Microbiology;2024

2. Patch-based deep learning models for breast mammographic mass classification;Proceedings of the 2023 15th International Conference on Bioinformatics and Biomedical Technology;2023-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3