Abstract
In this paper, shunt active power filter (SAPF) is designed to address the problem of current harmonics in the source current arising from a nonlinear load and improve the quality of electric power. That will be by compensating reactive power and harmonic currents. The PI controller responsible for DC-link energy storage tuning was developed using the Lévy flight distribution algorithm (LFA). It is a novel, previously unused optimization approach to suggest relative gain Kp and integration gain Ki gain values for the PI controller. This approach aims to get the best dynamic performance of SAPF, speed up the convergence rate, get the fastest best stability and bypass constant voltage advancement for DC-link. The model was tested and implemented in MATLAB simulation software. The result of total harmonic distortion THD showed the efficiency of this method compared with the results of traditional PI. The design of the model in the current reference frame was based on instantaneous reactive power (pq) theory.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Interactive PV-SAPF with Backstepping Controller for Power Quality Improvement;2023 1st International Conference on Renewable Solutions for Ecosystems: Towards a Sustainable Energy Transition (ICRSEtoSET);2023-05-06
2. Modified and Simplified ADALINE Extraction Algorithms for Shunt Active Power Filters - A Comparative Study;2022 IEEE International Conference on Power and Energy (PECon);2022-12-05