Power Consumption Modeling and Analysis of Integrated Optical-Wireless Access Network

Author:

Ramli A.,Zulkifli N.,Idrus S. M.

Abstract

The integration of optical and wireless technologies at access networks are considered as a future solution which provide both high bandwidth and high mobility in an efficient way. GPON is a suitable candidate for optical backhaul due to the combination of higher data rates, greater split ratio and support for triple play services hence it offers maximum flexibility and cost advantages. On the other hand, recent developments of new radio access technologies and introduction of femtocell base stations provide the potential of offering broadband services and applications to everyone and everywhere. However, the power consumption of this network demands a particular attention because access networks are the largest contributor the network related electricity consumption. Therefore, in this paper we evaluate the power consumption of integrated optical-wireless access network which is based on independent ONU-BS architecture. We proposed a power consumption model for such network and the assessment has been done under different simulation scenarios. The constructed model will provide insight of the energy performance of the integrated access network so that in the network design process, focus can be done to the most energy saving strategies.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Behaviour-based sleep mode for energy efficient integrated optical-wireless access network;THE 5TH INTERNATIONAL CONFERENCE ON BIOSCIENCE AND BIOTECHNOLOGY;2023

2. Cost and Energy Consumption Assessment of Fiber-to-the-School Network;2022 IEEE 6th International Symposium on Telecommunication Technologies (ISTT);2022-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3