Hybrid energy storage system control analogous to power quality enhancement operation of interlinking converters

Author:

Hajiaghasi Salman,Salemnia Ahmad,Hamzeh Mohsen

Abstract

Increasing nonlinear loads and power electronic converters lead to various power quality issues in microgrids (MGs). The interlinking converters (ILCs) can participate in these systems to harmonic control and power quality enhancement. However, ILC participation deteriorates the dc link voltage, system stability, and storage lifetime due to oscillatory current phenomena. To address these problems, a new control strategy for a hybrid energy storage system (HESS) is proposed to eliminate the adverse effects of the harmonic control operation of ILC. Specifically, battery and super-capacitor (SC) are used as HESSs that provide low and high power frequency load, respectively. The proposed strategy tries to compensate the current oscillation imposed by ILC with fuzzy control of HESS. In this method, a proportional-resonant (PR) controller integrated with harmonic compensator (HC) is employed to control the ILC for power quality enhancement and oscillatory current elimination. The main advantages of the proposed strategy are to reduce DGs power fluctuations, precise DC bus voltage regulation for generation and load disturbances, improved grid power quality under nonlinear load and transition conditions. The performance of the proposed method for isolated and grid-connected modes is verified using simulation studies in the MATLAB software environment.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Stability in Hybrid AC/DC Microgrids with Controlled Magnetic Energy Router;2023 24th International Middle East Power System Conference (MEPCON);2023-12-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3