Available techniques in hadoop small file issue

Author:

Masadeh M. B.,Azmi M. S.,Ahmad S. S. S.

Abstract

Hadoop is an optimal solution for big data processing and storing since being released in the late of 2006, hadoop data processing stands on master-slaves manner [1] that’s splits the large file job into several small files in order to process them separately, this technique was adopted instead of pushing one large file into a costly super machine to insights some useful information. Hadoop runs very good with large file of big data, but when it comes to big data in small files it could facing some problems in performance, processing slow down, data access delay, high latency and up to a completely cluster shutting down [2]. In this paper we will high light on one of hadoop’s limitations, that’s affects the data processing performance, one of these limits called “big data in small files” accrued when a massive number of small files pushed into a hadoop cluster which will rides the cluster to shut down totally. This paper also high light on some native and proposed solutions for big data in small files, how do they work to reduce the negative effects on hadoop cluster, and add extra performance on storing and accessing mechanism.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Mass Image Data Storage Method for Data Center;3D Imaging—Multidimensional Signal Processing and Deep Learning;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3