Abstract
Nowadays, the number of road accident in Malaysia is increasing expeditiously. One of the ways to reduce the number of road accident is through the development of the advanced driving assistance system (ADAS) by professional engineers. Several ADAS system has been proposed by taking into consideration the delay tolerance and the accuracy of the system itself. In this work, a traffic sign recognition system has been developed to increase the safety of the road users by installing the system inside the car for driver’s awareness. TensorFlow algorithm has been considered in this work for object recognition through machine learning due to its high accuracy. The algorithm is embedded in the Raspberry Pi 3 for processing and analysis to detect the traffic sign from the real-time video recording from Raspberry Pi camera NoIR. This work aims to study the accuracy, delay and reliability of the developed system using a Raspberry Pi 3 processor considering several scenarios related to the state of the environment and the condition of the traffic signs. A real-time testbed implementation has been conducted considering twenty different traffic signs and the results show that the system has more than 90% accuracy and is reliable with an acceptable delay.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献