An agent-based model to assess coronavirus disease 19 spread and health systems burden

Author:

Narassima Madhavarao SeshadriORCID,Anbuudayasankar Singallur PalanisamyORCID,Rajesh Jammy GuruORCID,Sankarshana AnanthaPadmanabhanORCID,Pant RashmiORCID,Choudhury LincolnORCID,Yeldandi VijayORCID,Singh ShubhamORCID,John DennyORCID

Abstract

The present pandemic has tremendously raised the health systems’ burden around the globe. It is important to understand the transmission dynamics of the infection and impose localized strategies across different geographies to curtail the spread of the infection. The present study was designed to assess the transmission dynamics and the health systems’ burden of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using an agent-based modeling (ABM) approach. The study used a synthetic population with 31,738,240 agents representing 90.67 percent of the overall population of Telangana, India. The effects of imposing and lifting lockdowns, nonpharmaceutical interventions, and the role of immunity were analyzed. The distribution of people in different health states was measured separately for each district of Telangana. The spread dramatically increased and reached a peak soon after the lockdowns were relaxed. It was evident that is the protection offered is higher when a higher proportion of the population is exposed to the interventions. ABMs help to analyze grassroots details compared to compartmental models. Risk estimates provide insights on the proportion of the population protected by the adoption of one or more of the control measures, which is of practical significance for policymaking.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development of a Web-based calculator to estimate DALY and Productivity Losses due to COVID-19;Clinical Epidemiology and Global Health;2024-03

2. Data-driven prognosis of long COVID in patients using machine learning;INTELLIGENT BIOTECHNOLOGIES OF NATURAL AND SYNTHETIC BIOLOGICALLY ACTIVE SUBSTANCES: XIV Narochanskie Readings;2023

3. A Survey of the Various Methods and Models Used to Detect Long COVID;2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA;2022-08-26

4. Workplace Assignment to Workers in Synthetic Populations in Japan;IEEE Transactions on Computational Social Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3