Searching surveillance video contents using convolutional neural network

Author:

Mohammad Duaa,Aljarrah Inad,Jarrah Moath

Abstract

Manual video inspection, searching, and analyzing is exhausting and inefficient. This paper presents an intelligent system to search surveillance video contents using deep learning. The proposed system reduced the amount of work that is needed to perform video searching and improved the speed and accuracy. A pre-trained VGG-16 CNNs model is used for dataset training. In addition, key frames of videos were extracted in order to save space, reduce the amount of work, and reduce the execution time. The extracted key frames were processed using the sobel operator edge detector and the max-pooling in order to eliminate redundancy. This increases compaction and avoids similarities between extracted frames. A text file, that contains key frame index, time of occurrence, and the classification of the VGG-16 model, is produced. The text file enables humans to easily search for objects of interest. VIRAT and IVY LAB datasets were used in the experiments. In addition, 128 different classes were identified in the datasets. The classes represent important objects for surveillance systems. However, users can identify other classes and utilize the proposed methodology. Experiments and evaluation showed that the proposed system outperformed existing methods in an order of magnitude. The system achieved the best results in speed while providing a high accuracy in classification.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3