A proposed model for frequency tuned antennas used in mobile communication systems

Author:

Al Ka'bi Amin H.,Rady Magid M.

Abstract

The antenna is considered as one of the most fundamental elements in wireless communication systems, especially in mobile devices. Desirable specifications of antennas include covering wide range of operating frequencies, while maintaining high quality of system performance over the whole range of operating frequencies. Therefore, the ability of tuning the resonant frequency of the antenna without altering its physical dimensions would be highly recommended in up-and-coming designs of antennas in mobile devices. This research work proposes a model for tuning the operating frequency of the inverted F-antenna over a reasonably wide range of frequencies, via altering the electromagnetic properties of its ferrite material. In this proposed model, it will be shown that the electronic control of the permeability of the ferrite material of the antenna leads effectively to a significant shift in its resonant frequency, and hence to an overall improvement in the performance of the communication system.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-Wideband MIMO Antenna Design for THz Application;2023 6th International Conference on Advanced Communication Technologies and Networking (CommNet);2023-12-11

2. A Proposed MIMO Antenna Design for Ultra-Wideband THz Applications;2023 7th International Conference on System Reliability and Safety (ICSRS);2023-11-22

3. DESIGN OF A MICROSTRIP DUAL BAND FRACTAL ANTENNA FOR MOBILE COMMUNICATIONS;Telecommunications and Radio Engineering;2023

4. IMPROVEMENT OF ENERGY COLLECTION EFFICIENCY IN MOBILE SENSOR NETWORKS;Telecommunications and Radio Engineering;2023

5. Challenges Encountered by Artificial Intelligence Applications in Today’s Interconnected World;2022 International Conference on Electrical, Computer and Energy Technologies (ICECET);2022-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3