MTVRep: A movie and TV show reputation system based on fine-grained sentiment and semantic analysis

Author:

Benlahbib Abdessamad,Nfaoui El Habib

Abstract

Customer reviews are a valuable source of information from which we can extract very useful data about different online shopping experiences. For trendy items (products, movies, TV shows, hotels, services . . . ), the number of available users and customers’ opinions could easily surpass thousands. Therefore, online reputation systems could aid potential customers in making the right decision (buying, renting, booking . . . ) by automatically mining textual reviews and their ratings. This paper presents MTVRep, a movie and TV show reputation system that incorporates fine-grained opinion mining and semantic analysis to generate and visualize reputation toward movies and TV shows. Differently from previous studies on reputation generation that treat the task of sentiment analysis as a binary classification problem (positive, negative), the proposed system identifies the sentiment strength during the phase of sentiment classification by using fine-grained sentiment analysis to separate movie and TV show reviews into five discrete classes: strongly negative, weakly negative, neutral, weakly positive and strongly positive. Besides, it employs embeddings from language models (ELMo) representations to extract semantic relations between reviews. The contribution of this paper is threefold. First, movie and TV show reviews are separated into five groups based on their sentiment orientation. Second, a custom score is computed for each opinion group. Finally, a numerical reputation value is produced toward the target movie or TV show. The efficacy of the proposed system is illustrated by conducting several experiments on a real-world movie and TV show dataset.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Opinion Mining and Text Analytics of Reader Reviews of Yoko Ogawa's The Housekeeper and the Professor in Goodreads;Handbook of Research on Opinion Mining and Text Analytics on Literary Works and Social Media;2022-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3