Author:
Al Dujaili Mohammed Jawad,Ebrahimi-Moghadam Abbas,Fatlawi Ahmed
Abstract
Recognizing the sense of speech is one of the most active research topics in speech processing and in human-computer interaction programs. Despite a wide range of studies in this scope, there is still a long gap among the natural feelings of humans and the perception of the computer. In general, a sensory recognition system from speech can be divided into three main sections: attribute extraction, feature selection, and classification. In this paper, features of fundamental frequency (FEZ) (F0), energy (E), zero-crossing rate (ZCR), fourier parameter (FP), and various combinations of them are extracted from the data vector, Then, the principal component analysis (PCA) algorithm is used to reduce the number of features. To evaluate the system performance. The fusion of each emotional state will be performed later using support vector machine (SVM), K-nearest neighbor (KNN), In terms of comparison, similar experiments have been performed on the emotional speech of the German language, English language, and significant results were obtained by these comparisons.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献