Context Sensitive Search String Composition Algorithm using User Intention to Handle Ambiguous Keywords

Author:

Gajendragadkar Uma,Joshi Sarang

Abstract

<p>Finding the required URL among the first few result pages of a search engine is still a challenging task. This may require number of reformulations of the search string thus adversely affecting user's search time. Query ambiguity and polysemy are major reasons for not obtaining relevant results in the top few result pages. Efficient query composition and data organization are necessary for getting effective results. Context of the information need and the user intent may improve the autocomplete feature of existing search engines. This research proposes a Funnel Mesh-5 algorithm (FM5) to construct a search string taking into account context of information need and user intention with three main steps 1) Predict user intention with user profiles and the past searches via weighted mesh structure 2) Resolve ambiguity and polysemy of search strings with context and user intention 3) Generate a personalized disambiguated search string by query expansion encompassing user intention and predicted query. Experimental results for the proposed approach and a comparison with direct use of search engine are presented. A comparison of FM5 algorithm with K Nearest Neighbor algorithm for user intention identification is also presented. The proposed system provides better precision for search results for ambiguous search strings with improved identification of the user intention. Results are presented for English language dataset as well as Marathi (an Indian language) dataset of ambiguous search strings.</p><p> </p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance of search engine optimization tools and techniques in mobile computing;AGRIVOLTAICS2021 CONFERENCE: Connecting Agrivoltaics Worldwide;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3