Abstract
Code smell refers to any symptom introduced in design or implementation phases in the source code of a program. Such a code smell can potentially cause deeper and serious problems during software maintenance. The existing approaches to detect bad smells use detection rules or standards using a combination of different object-oriented metrics. Although a variety of software detection tools have been developed, they still have limitations and constraints in their capabilities. In this paper, a code smell detection system is presented with the neural network model that delivers the relationship between bad smells and object-oriented metrics by taking a corpus of Java projects as experimental dataset. The most well-known object-oriented metrics are considered to identify the presence of bad smells. The code smell detection system uses the twenty Java projects which are shared by many users in the GitHub repositories. The dataset of these Java projects is partitioned into mutually exclusive training and test sets. The training dataset is used to learn the network model which will predict smelly classes in this study. The optimized network model will be chosen to be evaluated on the test dataset. The experimental results show when the modelis highly trained with more dataset, the prediction outcomes are improved more and more. In addition, the accuracy of the model increases when it performs with higher epochs and many hidden layers.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献