LSTM deep learning method for network intrusion detection system

Author:

Boukhalfa Alaeddine,Abdellaoui Abderrahim,Hmina Nabil,Chaoui Habiba

Abstract

The security of the network has become a primary concern for organizations. Attackers use different means to disrupt services or steal information, these various attacks push to think of a new way to block them all in one manner. In addition, these intrusions can change and penetrate the devices of security. To solve these issues, we suggest, in this paper, a new idea for Network Intrusion Detection System (NIDS) based on Long Short-TermMemory (LSTM) to recognize menaces and to obtain a long-term memory on them, inorder to stop the new attacks that are like the existing ones, and at the sametime, to have a single mean to block intrusions. According to the results of the experiments of detections that we have carried out, the Accuracy reaches upto 99.98 % and 99.93 % for respectively the classification of two classes and several classes, Also the False Positive Rate (FPR) reaches up to only 0,068 % and 0,023 % for respectively the classification of two classes and several classes, which proves that the proposed model is very effective, it has a great ability to memorize and differentiate between normal traffic and attack traffic and its identification is more accurate than other Machine Learning classifiers.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Critical Review of Artificial Intelligence Based Approaches in Intrusion Detection: A Comprehensive Analysis;Journal of Engineering;2024-04-15

2. Team Work Optimizer Based Bidirectional LSTM Model for Designing a Secure Cybersecurity Model;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

3. Deep Learning Bi-LSTM Model for Intrusion Detection in IoT;2023 5th International Conference on Advances in Computing, Communication Control and Networking (ICAC3N);2023-12-15

4. Intrusion Detection Method Based on BiGRU and CBAM;2023 4th International Conference on Computer Engineering and Intelligent Control (ICCEIC);2023-10-20

5. Network Intrusion Detection: A Study on Various Learning Approaches;2023 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE);2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3