Recommender Systems in Light of Big Data

Author:

A. Almohsen Khadija,Al-Jobori Huda

Abstract

The growth in the usage of the web, especially e-commerce website, has led to the development of recommender system (RS) which aims in personalizing the web content for each user and reducing the cognitive load of information on the user. However, as the world enters Big Data era and lives through the contemporary data explosion, the main goal of a RS becomes to provide millions of high quality recommendations in few seconds for the increasing number of users and items. One of the successful techniques of RSs is collaborative filtering (CF) which makes recommendations for users based on what other like-mind users had preferred. Despite its success, CF is facing some challenges posed by Big Data, such as: scalability, sparsity and cold start. As a consequence, new approaches of CF that overcome the existing problems have been studied such as Singular value decomposition (SVD). This paper surveys the literature of RSs and reviews the current state of RSs with the main concerns surrounding them due to Big Data. Furthermore, it investigates thoroughly SVD, one of the promising approaches expected to perform well in tackling Big Data challenges, and provides an implementation to it using some of the successful Big Data tools (i.e. Apache Hadoop and Spark). This implementation is intended to validate the applicability of, existing contributions to the field of, SVD-based RSs as well as validated the effectiveness of Hadoop and spark in developing large-scale systems. The implementation has been evaluated empirically by measuring mean absolute error which gave comparable results with other experiments conducted, previously by other researchers, on a relatively smaller data set and non-distributed environment. This proved the scalability of SVD-based RS and its applicability to Big Data.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3