Data loss prevention (DLP) by using MRSH-v2 algorithm

Author:

Husham Ali Basheer,Jalal Ahmed Adeeb,Al-Obaydy Al-Obaydy Wasseem N. Ibrahem

Abstract

Sensitive data may be stored in different forms. Not only legal owners but also malicious people are interesting of getting sensitive data. Exposing valuable data to others leads to severe Consequences. Customers, organizations, and /or companies lose their money and reputation due to data breaches. There are many reasons for data leakages. Internal threats such as human mistakes and external threats such as DDoS attacks are two main reasons for data loss. In general, data may be categorized based into three kinds: data in use, data at rest, and data in motion. Data Loss Prevention (DLP) are good tools to identify important data. DLP can do analysis for data content and send feedback to administrators to make decision such as filtering, deleting, or encryption. Data Loss Prevention (DLP) tools are not a final solution for data breaches, but they consider good security tools to eliminate malicious activities and protect sensitive information. There are many kinds of DLP techniques, and approximation matching is one of them. Mrsh-v2 is one type of approximation matching. It is implemented and evaluated by using TS dataset and confusion matrix. Finally, Mrsh-v2 has high score of true positive and sensitivity, and it has low score of false negative.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on the Integration of Different DLP Systems at Different Levels;Lecture Notes in Electrical Engineering;2023

2. Implementation of Two Layered DLP Strategies;2022 International Conference on Cyber Warfare and Security (ICCWS);2022-12-07

3. Data Leakage Prevention System for Internal Security;2022 International Conference on Futuristic Technologies (INCOFT);2022-11-25

4. Advanced security testing using a cyber‐attack forecasting model: A case study of financial institutions;Journal of Software: Evolution and Process;2022-08-08

5. Survey of Techniques on Data Leakage Protection and Methods to address the Insider threat;Cluster Computing;2022-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3