An Event-based Middleware for Syntactical Interoperability in Internet of Things

Author:

Pramukantoro Eko Sakti,Anwari Husnul

Abstract

Internet of Things (IoT) connecting sensors or devices that record physical observations of the environment and a variety of applications or other Internet services. Along with the increasing number and diversity of devices connected, there arises a problem called interoperability. One type of interoperability is syntactical interoperability, where the IoT should be able to connect all devices through various data protocols. Based on this problem, we proposed a middleware that capable of supporting interoperability by providing a multi-protocol gateway between COAP, MQTT, and WebSocket. This middleware is developed using event-based architecture by implementing publish-subscribe pattern. We also developed a system to test the performance of middleware in terms of success rate and delay delivery of data. The system consists of temperature and humidity sensors using COAP and MQTT as a publisher and web application using WebSocket as a subscriber. The results for data transmission, either from sensors or MQTT COAP has a success rate above 90%, the average delay delivery of data from sensors COAP and MQTT below 1 second, for packet loss rate varied between 0% - 25%. The interoperability testing has been done using Interoperability assessment methodology and found out that ours is qualified.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuzzy Tsukamoto Implementation to Detect Physiological Condition on IoT-Based e-Learning Users;International Journal of Information and Education Technology;2022

2. Middleware Solutions for the Internet of Things: A Survey;Middleware Architecture;2021-12-22

3. Interoperability of Microservice-Based Systems;2021 13th International Conference on Electrical and Electronics Engineering (ELECO);2021-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3