Optimetric analysis of 1x4 array of circular microwave patch antennas for mammographic applications using adaptive gradient descent algorithm

Author:

Adedayo Ojo O.,Onibonoje Moses Oluwafemi,Michael Adegoke Ogunlade

Abstract

Interest in the use of microwave equipment for breast imagery is on the increase owing to its safety, ease of use and friendlier cost. However, some of the pertinent blights of the design and optimization of microwave antenna include intensive consumption of computing resources, high price of software acquisition and very large optimization time. This paper therefore attempts to address these concerns by devising a rapid means of designing and optimizing the performance of a 1×4 array of circular microwave patch antenna for breast imagery applications by deploying the adaptive gradient descent algorithm (AGDA) for a circumspectly designed artificial neural network. In order to cross validate the findings of this work, the results obtained using the adaptive gradient descent algorithm was compared with those obtained with the deployment of the much reported Levenberg-Marquardt algorithm for the same dataset over same frequency range and training constraints. Analysis of the performance of the AGDA neural network shows that the approach is a viable and accurate technique for rapid design and analysis of arrays of circular microwave patch antenna for breast imaging.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Analysis of BFGS Quasi-Newton Neuro Algorithm for the Design of 30 GHz Patch Antenna for 5G Applications;2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON);2022-04-17

2. Evaluation of Thermal Comfort in a Multi-Occupancy Office using Polak-Ribiére Conjugate Gradient Neuro-Algorithm;2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON);2022-04-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3