Wearable sensor-based human activity recognition with ensemble learning: a comparison study

Author:

Luwe Yee JiaORCID,Lee Chin PooORCID,Lim Kian MingORCID

Abstract

<p>The spectacular growth of wearable sensors has provided a key contribution to the field of human activity recognition. Due to its effective and versatile usage and application in various fields such as smart homes and medical areas, human activity recognition has always been an appealing research topic in artificial intelligence. From this perspective, there are a lot of existing works that make use of accelerometer and gyroscope sensor data for recognizing human activities. This paper presents a comparative study of ensemble learning methods for human activity recognition. The methods include random forest, adaptive boosting, gradient boosting, extreme gradient boosting, and light gradient boosting machine (LightGBM). Among the ensemble learning methods in comparison, light gradient boosting machine and random forest demonstrate the best performance. The experimental results revealed that light gradient boosting machine yields the highest accuracy of 94.50% on UCI-HAR dataset and 100% on single accelerometer dataset while random forest records the highest accuracy of 93.41% on motion sense dataset.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Monitoring of Hip Joint Forces and Physical Activity after Total Hip Replacement by an Integrated Piezoelectric Element;Technologies;2024-04-09

2. Greeting Gesture Classification Using Machine Learning Based on Politeness Perspective in Japan;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-03-20

3. Door Locking System Based on Fingerprint and LoRa Wireless Technology;2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter);2023-12-11

4. The Power of ANN-Random Forest Algorithm in Human Activities Recognition Using IMU Data;2023 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI);2023-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3