Performance and statistical analysis of ant colony route in mobile ad-hoc networks

Author:

Alameri Ibrahim Ahmed,Komarkova Jitka

Abstract

<div class="WordSection1"><p>Research on mobile ad-hoc networks (MANETs) is increasing in popularity due to its rapid, budget-friendly, and easily altered implementation, and relevance to emergencies such as forest firefighting and health care provisioning. The main concerns that ad-hoc networks face is dynamic topology, energy usage, packet drop rate, and throughput. Routing protocol selection is a critical point to surmount alterations in topology and maintain quality in MANET networks. The effectiveness of any network can be vastly enhanced with a well-designed routing protocol. In recent decades, standard MANET protocols have not been able to keep pace with growing demands for MANET applications. The current study investigates and contrasts ant colony optimization (ACO) with various routing protocols. This paper compares ad-hoc on-demand multi-path distance vector (AOMDV), dynamic source routing protocol (DSR), ad-hoc on-demand distance vector routing (AODV), and AntHocNet protocols regarding the quality of service (QoS) and statistical analysis. The current research aims to study the behavior of the state-of-the-art MANET protocols with the ACO technique. The ACO technique is a hybrid technique, integrating a reactive route maintaining technique with a proactive method. The reason and motivation for including the ACO algorithm in the current study is to improve by using optimization algorithms proved in other domains. The ACO algorithm appears to have substantial use in large-scale MANET simulation.</p></div>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of Ant Colony Optimization Algorithm for Load Balancing Routing in MANET Network;2022 Second International Conference on Advanced Technologies in Intelligent Control, Environment, Computing & Communication Engineering (ICATIECE);2022-12-16

2. Systematic review on modification to the ad-hoc on-demand distance vector routing discovery mechanics;PeerJ Computer Science;2022-09-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3