Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier

Author:

George Fabian Parsia,Shaikat Istiaque Mannafee,Ferdawoos Hossain Prommy Sultana,Parvez Mohammad Zavid,Uddin Jia

Abstract

The recognition of emotions is a vast significance and a high developing field of research in the recent years. The applications of emotion recognition have left an exceptional mark in various fields including education and research. Traditional approaches used facial expressions or voice intonation to detect emotions, however, facial gestures and spoken language can lead to biased and ambiguous results. This is why, researchers have started to use electroencephalogram (EEG) technique which is well defined method for emotion recognition. Some approaches used standard and pre-defined methods of the signal processing area and some worked with either fewer channels or fewer subjects to record EEG signals for their research. This paper proposed an emotion detection method based on time-frequency domain statistical features. Box-and-whisker plot is used to select the optimal features, which are later feed to SVM classifier for training and testing the DEAP dataset, where 32 participants with different gender and age groups are considered. The experimental results show that the proposed method exhibits 92.36% accuracy for our tested dataset. In addition, the proposed method outperforms than the state-of-art methods by exhibiting higher accuracy.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3