Adaptive photovoltaic solar module based on internet of things and web-based monitoring system

Author:

Kassim Murizah,Lazim Fadila

Abstract

<span>This paper presents an intelligent of single axis automatic adaptive photovoltaic solar module. A static solar panel has an issue of efficiency on shading effects, irradiance of sunlight absorbed, and less power generates. This aims to design an effective algorithm tracking system and a prototype automatic adaptive solar photovoltaic (PV) module connected through </span><span>internet of things (IoT). The system has successfully designated on solving efficiency optimization. A tracking system by using active method orientation and allows more power and energy are captured. The solar rotation angle facing aligned to the light-dependent resistor (LDR) voltage captured and high solar panel voltage measured by using Arduino microcontroller. Real-time data is collected from the dynamic solar panel, published on Node-Red webpage, and running interactive via android device. The system has significantly reduced time. Data captured by the solar panel then analyzed based on irradiance, voltage, current, power generated and efficiency. Successful results present a live data analytic platform with active tracking system that achieved larger power generated and efficiency of solar panel compared to a fixed mounted array. This research is significant that can help the user to monitor parameters collected by the solar panel thus able to increase 51.82% efficiency of the PV module.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brightness Controlled Solar Powered Intelligent Street Light;2023 19th IEEE International Colloquium on Signal Processing & Its Applications (CSPA);2023-03-03

2. A Comprehensive Review of Solar Photovoltaic (PV) Technologies, Architecture, and Its Applications to Improved Efficiency;Energies;2022-12-28

3. Design and Analysis of Portable Solar Powered Refrigerator Unit;2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET);2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3