Design and implementation of smart farming system for fig using connected-argonomics

Author:

Zainal N.,Mohamood N.,Norman M. F.,Sanmutham D.

Abstract

<span lang="EN-US">This paper proposes a design and implementation approach of smart farming system using connected-agronomics technique for fig farm application. Nowadays, fig plants having a rapid growth in the current market demand due to its rich in natural health benefiting nutrients, antioxidants and vitamins where some farming systems have been used  in maintaining fig plant’s environmental resources to grow without fail. Smart farming is a system applied to provide user with real time information and plan for desired plant such as time intervals for watering systems. There are two major problems on maintaining the fig fruit quality; watering system fail during emergency blackout and a contagious disease known as leaf rust due to external environments. The system implements two microcontrollers, the Arduino Uno &amp; Raspberry Pi along with smartphone Android application. The system performance is evaluated based on the requirement specification, irrigation soil, surrounding temperature and moisture. It is found that all data collected by the sensors are within the optimal range of values, which are 1500 µS/cm to 1599 µS/cm for the EC reading of the fertilizer while 6.0 to 6.5 for the pH value of the soil. This prototype of smart farming was well developed and can be applied to the fig plantation environment.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Turmeric Farm Monitoring and Automation Using Deep Learning and Fuzzy Logic on Raspberry Pi: A Low-cost and Energy Efficient Solution;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

2. Smart Farming System and Its Role in Supporting SDGs;Studies in Systems, Decision and Control;2024

3. An Extensive Analysis of Flying Ad-Hoc Network Applications and Routing Protocols in Agriculture;Artificial Intelligence Applications in Agriculture and Food Quality Improvement;2022-05-27

4. Emerging Crop Traceability Systems in Smart Farming: A Review;Proceedings of the International Conference on Computer, Information Technology and Intelligent Computing (CITIC 2022);2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3