Design and Implementation of Portable Outdoor Air Quality Measurement System using Arduino

Author:

Gunawan Teddy Surya,Saiful Munir Yasmin Mahira,Kartiwi Mira,Mansor Hasmah

Abstract

Recently, there is increasing public awareness of the real time air quality due to air pollution can cause severe effects to human health and environments. The Air Pollutant Index (API) in Malaysia is measured by Department of Environment (DOE) using stationary and expensive monitoring station called Continuous Air Quality Monitoring stations (CAQMs) that are only placed in areas that have high population densities and high industrial activities. Moreover, Malaysia did not include particulate matter with the size of less than 2.5μm (PM2.5) in the API measurement system. In this paper, we present a cost effective and portable air quality measurement system using Arduino Uno microcontroller and four low cost sensors. This device allows people to measure API in any place they want. It is capable to measure the concentration of carbon monoxide (CO), ground level ozone (O3) and particulate matters (PM10 & PM2.5) in the air and convert the readings to API value. This system has been tested by comparing the API measured from this device to the current API measured by DOE at several locations. Based on the results from the experiment, this air quality measurement system is proved to be reliable and efficient.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IoT Integrated Automatic Environmental Monitoring System;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

2. Evaluation of Air Pollution Levels in Agricultural Settings Using Integrated Weather Variables and Air Pollutants;Applied Sciences;2024-06-29

3. A Low-Cost Air Quality Monitoring IoT System Using Node MCU: A Novel Approach;Transfer, Diffusion and Adoption of Next-Generation Digital Technologies;2023-12-13

4. Analysis Results of Greenhouse Gas and Meteorology Data Obtained During Pandemic Period Using Developed Dynamic Monitoring Station;2023 IEEE East-West Design & Test Symposium (EWDTS);2023-09-22

5. Manufacturing A Low-Cost Telegram and Optical Character Recognition-Based Indoor Air Quality Monitoring Data Logger;2023 International Conference on Information Management and Technology (ICIMTech);2023-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3