Abstract
Servers in data center networks handle heterogenous bulk loads. Load balancing, therefore, plays an important role in optimizing network bandwidth and minimizing response time. A complete knowledge of the current network status is needed to provide a stable load in the network. The process of network status catalog in a traditional network needs additional processing which increases complexity, whereas, in software defined networking, the control plane monitors the overall working of the network continuously. Hence it is decided to propose an efficient load balancing algorithm that adapts SDN. This paper proposes an efficient algorithm TA-ASLB-traffic-aware adaptive server load balancing to balance the flows to the servers in a data center network. It works based on two parameters, residual bandwidth, and server capacity. It detects the elephant flows and forwards them towards the optimal server where it can be processed quickly. It has been tested with the Mininet simulator and gave considerably better results compared to the existing server load balancing algorithms in the floodlight controller. After experimentation and analysis, it is understood that the method provides comparatively better results than the existing load balancing algorithms.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Node Default Detection and Optimal Placement of Nodes in WSN;2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI);2024-05-09
2. Optimal Server Prediction in Data Center Networks using Machine Learning Techniques;2024 2nd International Conference on Networking and Communications (ICNWC);2024-04-02