Performance analysis of sentiments in Twitter dataset using SVM models

Author:

Ramasamy Lakshmana Kumar,Kadry Seifedine,Nam Yunyoung,Meqdad Maytham N.

Abstract

Sentiment Analysis is a current research topic by many researches using supervised and machine learning algorithms. The analysis can be done on movie reviews, twitter reviews, online product reviews, blogs, discussion forums, Myspace comments and social networks. The Twitter data set is analyzed using support vector machines (SVM) classifier with various parameters. The content of tweet is classified to find whether it contains fact data or opinion data. The deep analysis is required to find the opinion of the tweets posted by the individual. The sentiment is classified in to positive, negative and neutral. From this classification and analysis, an important decision can be made to improve the productivity. The performance of SVM radial kernel, SVM linear grid and SVM radial grid was compared and found that SVM linear grid performs better than other SVM models.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3