A novel convolutional neural network based dysphonic voice detection algorithm using chromagram

Author:

Islam RumanaORCID,Tarique MohammedORCID

Abstract

<span>This paper presents a convolutional neural network (CNN) based non-invasive pathological voice detection algorithm using signal processing approach. The proposed algorithm extracts an acoustic feature, called chromagram, from voice samples and applies this feature to the input of a CNN for classification. The main advantage of chromagram is that it can mimic the way humans perceive pitch in sounds and hence can be considered useful to detect dysphonic voices, as the pitch in the generated sounds varies depending on the pathological conditions. The simulation results show that classification accuracy of 85% can be achieved with the chromagram. A comparison of the performances for the proposed algorithm with those of other related works is also presented.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Residual Network Based Bidirectional Gated Recurrent Unit for Speech Recognition Using Speech Signals;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

2. Multitask and Transfer Learning Approach for Joint Classification and Severity Estimation of Dysphonia;IEEE Journal of Translational Engineering in Health and Medicine;2024

3. Cochleagram to Recognize Dysphonia: Auditory Perceptual Analysis for Health Informatics;IEEE Access;2024

4. Multi-class Classification of Voice Disorders Using Deep Transfer Learning;Studies in Computational Intelligence;2024

5. Robust Assessment of Dysarthrophonic Voice with RASTA-PLP Features: A Nonlinear Spectral Measures;2023 2nd International Conference on Mechatronics and Electrical Engineering (MEEE);2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3