Secured node detection technique based on artificial neural network for wireless sensor network

Author:

Hasan Bassam,Alani Sameer,Saad Mohammed Ayad

Abstract

The wireless sensor network is becoming the most popular network in the last recent years as it can measure the environmental conditions and send them to process purposes. Many vital challenges face the deployment of WSNs such as energy consumption and security issues. Various attacks could be subjects against WSNs and cause damage either in the stability of communication or in the destruction of the sensitive data. Thus, the demands of intrusion detection-based energy-efficient techniques rise dramatically as the network deployment becomes vast and complicated. Qualnet simulation is used to measure the performance of the networks. This paper aims to optimize the energy-based intrusion detection technique using the artificial neural network by using MATLAB Simulink. The results show how the optimized method based on the biological nervous systems improves intrusion detection in WSN. In addition to that, the unsecured nodes are affected the network performance negatively and trouble its behavior. The regress analysis for both methods detects the variations when all nodes are secured and when some are unsecured. Thus, Node detection based on packet delivery ratio and energy consumption could efficiently be implemented in an artificial neural network.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3