Empirical Mode Decomposition (EMD) Based Denoising Method for Heart Sound Signal and Its Performance Analysis

Author:

Salman Amy Hamidah,Ahmadi Nur,Mengko Richard,Langi Armein Z. R.,Mengko Tati L. R.

Abstract

<p>In this paper, a denoising method for heart sound signal based on empirical mode decomposition (EMD) is proposed. To evaluate the performance of the proposed method, extensive simulations are performed using synthetic normal and abnormal heart sound data corrupted with white, colored, exponential and alpha-stable noise under different SNR input values. The performance is evaluated in terms of signal-to-noise ratio (SNR), root mean square error (RMSE), and percent root mean square difference (PRD), and compared with wavelet transform (WT) and total variation (TV) denoising methods. The simulation results show that the proposed method outperforms two other methods in removing three types of noises.</p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adopting artificial intelligence algorithms for remote fetal heart rate monitoring and classification using wearable fetal phonocardiography;Applied Soft Computing;2024-11

2. Empirical Mode Decomposition (EMD) Based Denoising Method for Heart Sound Signal and its Performance Analysis;2024 1st International Conference on Cognitive, Green and Ubiquitous Computing (IC-CGU);2024-03-01

3. A GAN Based Heart Sound Denoising Model;2022 12th International Conference on Information Technology in Medicine and Education (ITME);2022-11

4. Cardiovascular Disease Recognition Based on Heartbeat Segmentation and Selection Process;International Journal of Environmental Research and Public Health;2021-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3