Rule Optimization of Fuzzy Inference System Sugeno using Evolution Strategy for Electricity Consumption Forecasting

Author:

Santika Gayatri Dwi,Mahmudy Wayan Firdaus,Naba Agus

Abstract

The need for accurate load forecasts will increase in the future because of the dramatic changes occurring in the electricity consumption. Sugeno fuzzy inference system (FIS) can be used for short-term load forecasting. However, challenges in the electrical load forecasting are the data used the data trend. Therefore, it is difficult to develop appropriate fuzzy rules for Sugeno FIS. This paper proposes Evolution Strategy method to determine appropriate rules for Sugeno FIS that have minimum forecasting error. Root Mean Square Error (RMSE) is used to evaluate the goodness of the forecasting result. The numerical experiments show the effectiveness of the proposed optimized Sugeno FIS for several test-case problems. The optimized Sugeno FIS produce lower RMSE comparable to those achieved by other well-known method in the literature.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature Review: Evolution Strategies Application in Solving Multi-Objective Optimization;2021 IEEE 7th Information Technology International Seminar (ITIS);2021-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3