A novel optimization framework for controlling stabilization issue in design principle of FinFET based SRAM

Author:

H Girish,R Shahshikumar D.

Abstract

The conventional design principle of the finFET offers various constraints that act as an impediment towards improving ther performance of finFET SRAM. After reviewing existing approaches, it has been found that there are not enough work found to be emphasizing on cost-effective optimization by addressing the stability problems in finFET design.Therefore, the proposed system introduces a novel optimization mechanism considering some essential design attributes e.g. area, thickness of fin, and number of components. The contribution of the proposed technique is to determine the better form of thickness of fin and its related aspect that can act as a solution to minimize various other asscoiated problems in finFET SRAM. Implemented using soft-computational approach, the proposed system exhibits that it offers better energy retention, lower delay, and potential capability to offer higher throughput irrespective of presence of uncertain amount of noise within the component.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RTL Design and Logic Synthesis of Traffic Light Controller for 45nm Technology;2022 3rd International Conference for Emerging Technology (INCET);2022-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3