Author:
Cherrat El mehdi,Alaoui Rachid,Bouzahir Hassane
Abstract
<span lang="EN-US">Nowadays, the fingerprint identification system is the most exploited sector of biometric. Fingerprint image segmentation is considered one of its first processing stage. Thus, this stage affects typically the feature extraction and matching process which leads to fingerprint recognition system with high accuracy. In this paper, three major steps are proposed. First, Soble and TopHat filtering method have been used to improve the quality of the fingerprint images. Then, for each local block in fingerprint image, an accurate separation of the foreground and background region is obtained by K-means clustering for combining 5-dimensional characteristics vector (variance, difference of mean, gradient coherence, ridge direction and energy spectrum). Additionally, in our approach, the local variance thresholding is used to reduce computing time for segmentation. Finally, we are combined to our system DBSCAN clustering which has been performed in order to overcome the drawbacks of K-means classification in fingerprint images segmentation. The proposed algorithm is tested on four different databases. Experimental results demonstrate that our approach is significantly efficacy against some recently published techniques in terms of separation between the ridge and non-ridge region.</span>
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献