Improving of Fingerprint Segmentation Images Based on K-MEANS and DBSCAN Clustering

Author:

Cherrat El mehdi,Alaoui Rachid,Bouzahir Hassane

Abstract

<span lang="EN-US">Nowadays, the fingerprint identification system is the most exploited sector of biometric. Fingerprint image segmentation is considered one of its first processing stage. Thus, this stage affects typically the feature extraction and matching process which leads to fingerprint recognition system with high accuracy. In this paper, three major steps are proposed. First, Soble and TopHat filtering method have been used to improve the quality of the fingerprint images. Then, for each local block in fingerprint image, an accurate separation of the foreground and background region is obtained by K-means clustering for combining 5-dimensional characteristics vector (variance, difference of mean, gradient coherence, ridge direction and energy spectrum). Additionally, in our approach, the local variance thresholding is used to reduce computing time for segmentation. Finally, we are combined to our system DBSCAN clustering which has been performed in order to overcome the drawbacks of K-means classification in fingerprint images segmentation. The proposed algorithm is tested on four different databases. Experimental results demonstrate that our approach is significantly efficacy against some recently published techniques in terms of separation between the ridge and non-ridge region.</span>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3