Microstrip multi-stopband filter based on tree fractal slotted resonator

Author:

Bhaskar Manju,Mathew Thomaskutty

Abstract

This paper presents the design and development of a new microstrip multi-stopband filter based on tree fractal slotted resonator. A single square patch with tree fractal slots of different iterations are employed for realizing dual stopband and tri-stopband filters. The tree fractal slotted resonators are generated from conventional square patch using an iterative tree fractal generator method. First, second and third level iterations of the tree fractal slot resonator are used to design dual and tri-stopband filters respectively. The first level iteration introduced for the tree fractal slot realizes dual bands at 2.64 GHz and 3.61 GHz while the second level iteration provides better stopband rejection and insertion loss at 2.57 GHz and 3.56 GHz. The tri-stopband filter generates three resonance frequencies at 1.53 GHz, 2.53 GHz and 3.54 GHz at third level iteration. By varying the slot length and width of the tree fractal slot, the resonant frequencies can be adjusted and stopbands of the proposed filter can be tuned for the desired unwanted frequency to be rejected. The proposed narrowband filters finds application in removing the interference of GPS and Wi-Max narrowband signals from the allotted bands of other wireless communication systems

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Notch Filter Design and Realization using Cross-coupled Line Structure;2022 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET);2022-12-06

2. New microstrip multiband filter for modern wireless applications using Kappa substrate material;Materials Today: Proceedings;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3