Skin cancer classifier based on convolution residual neural network

Author:

Ajel Ahmed R.ORCID,Al-Dujaili Ayad QasimORCID,Hadi Zaid G.ORCID,Humaidi Amjad JaleelORCID

Abstract

Accurate automatic classification of skin lesion images is a great challenge as the image features are very close in these images. Convolution neural networks (CNN) promise to provide a potential classifier for skin lesions. This work will present dermatologist-level classification of skin cancer by using residual network (ResNet-50) as a deep learning convolutional neural network (DLCNN) that maps images to class labels. It presents a classifier with a single CNN to automatically recognize benign and malignant skin images. The network inputs are only disease labels and image pixels. About 320 clinical images of the different diseases have been used to train CNN. The model performance has been tested with untrained images from the two labels. This model identifies the most common skin cancers and can be updated with a new unlimited number of images. The DLCNN trained by the ResNet-50 model showed good classification of the benign and malignant skin categories. The ResNet-50 as a DLCNN has verified a significant recognition rate of more than 97% on the testing images, which proves that the benign and malignant lesion skin images are properly classified.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3