A review of deep learning models (U-Net architectures) for segmenting brain tumors

Author:

Al-Murshidawy Mawj Abdul-AmeerORCID,Al-Shamma OmranORCID

Abstract

Highly accurate tumor segmentation and classification are required to treat the brain tumor appropriately. Brain tumor segmentation (BTS) approaches can be categorized into manual, semi-automated, and full-automated. The deep learning (DL) approach has been broadly deployed to automate tumor segmentation in therapy, treatment planning, and diagnosing evaluation. It is mainly based on the U-Net model that has recently attained state-of-the-art performances for multimodal BTS. This paper demonstrates a literature review for BTS using U-Net models. Additionally, it represents a common way to design a novel U-Net model for segmenting brain tumors. The steps of this DL way are described to obtain the required model. They include gathering the dataset, pre-processing, augmenting the images (optional), designing/selecting the model architecture, and applying transfer learning (optional). The model architecture and the performance accuracy are the two most important metrics used to review the works of literature. This review concluded that the model accuracy is proportional to its architectural complexity, and the future challenge is to obtain higher accuracy with low-complexity architecture. Challenges, alternatives, and future trends are also presented.

Publisher

Institute of Advanced Engineering and Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3