Application of PEM Fuel Cell for Stand-alone Based on a Fuzzy PID Control

Author:

Rakhtala SM,Roudbari E Shafiee

Abstract

Due to increasing concerns on environmental pollution and depleting fossil fuels, fuel cell (FC) has received considerable attention as an alternative to the conventional energy systems. Fuel cells have numerous stand-alone and grid-connected applications. This paper presents the control of the stand-alone application based on fuzzy PID (FPID) controller. The aim of the paper is to achieve the control of the fuel cell for stand-alone with suitable power conditioning unit (PCU) that consists of the two stages of DC/DC converter and DC/AC inverter. An analysis of cascade structure based on FPID controller for a single phase inverter is done and comprises two feedback control loops. The inductor current and capacitor voltage are measured and feedback to the inner loop and the outer loop, respectively. The analytical models of the h PEM fuel cells is designed and simulated by developing a detailed simulation software using Matlab, Simulink and SimPowerSystems Blockset for portable applications. The PEM fuel cell model is validated with NexaTM Power Module MAN5100078 by Ballard Power Systems at 80°C. In this paper shown that the proposed controller shows a robust behavior and good transient response.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication methods, structure design and durability analysis of advanced sealing materials in proton exchange membrane fuel cells;Chemical Engineering Journal;2023-02

2. Induction Motor Torque Measurement using Prony Brake System and Close-loop Speed Control;International Journal of Robotics and Control Systems;2022-09-10

3. Optimization of PID Controller Using PSO Algorithm for a First Order Plus Dead Time (FOPDT) Process - A Simulation Study;2022 International Conference on Electrical, Computer and Energy Technologies (ICECET);2022-07-20

4. Performance Evaluation of Fuzzy-PID in Speed Control of Three Phase Induction Motor;IOP Conference Series: Materials Science and Engineering;2021-03-01

5. Performance Evaluation of Different Objective Function in PID Tuned by PSO in DC-Motor Speed Control;IOP Conference Series: Materials Science and Engineering;2021-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3