Behavioral biometric based personal authentication in feature phones

Author:

Thapliyal Amitabh,Verma Om Prakash,Kumar Amioy

Abstract

<p><span>The usage of mobile phones has increased multifold in the recent decades mostly because of its utility in most of the aspects of daily life, such as communications, entertainment, and financial transactions. Feature phones are generally the keyboard based or lower version of touch based mobile phones, mostly targeted for efficient calling and messaging. In comparison to smart phones, feature phones have no provision of a biometrics system for the user access. The literature, have shown very less attempts in designing a biometrics system which could be most suitable to the low-cost feature phones. A biometric system utilizes the features and attributes based on the physiological or behavioral properties of the individual. In this research, we explore the usefulness of keystroke dynamics for feature phones which offers an efficient and versatile biometric framework. In our research, we have suggested an approach to incorporate the user’s typing patterns to enhance the security in the feature phone. We have applied k-nearest neighbors (k-NN) with fuzzy logic and achieved the equal error rate (EER) 1.88% to get the better accuracy. The experiments are performed with 25 users on Samsung On7 Pro C3590. On comparison, our proposed technique is competitive with almost all the other techniques available in the literature.</span></p>

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understanding insiders in cloud adopted organizations: A survey on taxonomies, incident analysis, defensive solutions, challenges;Future Generation Computer Systems;2024-09

2. Landmark events, major trends, and the future of AI research: history, promise, hype;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

3. Anomaly Detection Using Smartphone Sensors for a Bullying Detection;Lecture Notes in Networks and Systems;2024

4. Extracting Cryptographically Secure Uniform Random Bits from a Biased Sequence;2023 Global Conference on Information Technologies and Communications (GCITC);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3