An efficient apriori algorithm for frequent pattern mining using mapreduce in healthcare data

Author:

Sornalakshmi M.,Balamurali S.,Venkatesulu M.,Krishnan M. Navaneetha,Ramasamy Lakshmana Kumar,Kadry Seifedine,Lim Sangsoon

Abstract

The development for data mining technology in healthcare is growing today as knowledge and data mining are a must for the medical sector. Healthcare organizations generate and gather large quantities of daily information. Use of IT allows for the automation of data mining and information that help to provide some interesting patterns which remove manual tasks and simple data extraction from electronic records, a process of electronic data transfer which secures medical records, saves lives and cuts the cost of medical care and enables early detection of infectious diseases. In this research paper an improved Apriori algorithm names Enhanced Parallel and Distributed Apriori (EPDA) is presented for the health care industry, based on the scalable environment known as Hadoop MapReduce. The main aim of the work proposed is to reduce the huge demands for resources and to reduce overhead communication when frequent data are extracted, through split-frequent data generated locally and the early removal of unusual data. The paper shows test results, whereby the EPDA performs in terms of the time and number of rules generated with a database of healthcare and different minimum support values.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Intelligence Mining Based on Improved Apriori Algorithm;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

2. Healthcare insurance fraud detection using data mining;BMC Medical Informatics and Decision Making;2024-04-26

3. Dynamic Scheduling of Multi-agent Electromechanical Production Lines based on Iterative Algorithms;Scalable Computing: Practice and Experience;2024-04-12

4. Design and Implementation of Green Traffic Monitoring System Based on Improved Apriori Algorithm;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

5. Design Information Systems for Malnutrition Analysis Apriori Algorithm;International Journal Of Computer Sciences and Mathematics Engineering;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3