Author:
Suhairi Md Suhaimin Mohd,Hanafi Ahmad Hijazi Mohd,Kheau Chung Seng,On Chin Kim
Abstract
Face recognition is gaining popularity as one of the biometrics methods for an attendance system in an organization. Due to the pandemic, the common face recognition system needs to be modified to meet the current needs, whereby facemask detection is necessary. The main objective of this paper is to investigate and develop a real-time face recognition system for the attendance system based on the current scenarios. The proposed framework consists of face detection, mask detection, face recognition, and attendance report generation modules. The face and facemask detection is performed using the haar cascade classifier. Two techniques for face recognition were investigated, the eigenfaces and local binary pattern histogram. The initial experimental results and implementation at Kuching Community College show the effectiveness of the system. For future work, an approach that is able to perform masked face recognition will be investigated.
Publisher
Institute of Advanced Engineering and Science
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献