Performance comparison of TF-IDF and Word2Vec models for emotion text classification

Author:

Cahyani Denis Eka,Patasik Irene

Abstract

Emotion is the human feeling when communicating with other humans or reaction to everyday events. Emotion classification is needed to recognize human emotions from text. This study compare the performance of the TF-IDF and Word2Vec models to represent features in the emotional text classification. We use the support vector machine (SVM) and Multinomial Naïve Bayes (MNB) methods for classification of emotional text on commuter line and transjakarta tweet data. The emotion classification in this study has two steps. The first step classifies data that contain emotion or no emotion. The second step classifies data that contain emotions into five types of emotions i.e. happy, angry, sad, scared, and surprised. This study used three scenarios, namely SVM with TF-IDF, SVM with Word2Vec, and MNB with TF-IDF. The SVM with TF-IDF method generate the highest accuracy compared to other methods in the first dan second steps classification, then followed by the MNB with TF-IDF, and the last is SVM with Word2Vec. Then, the evaluation using precision, recall, and F1-measure results that the SVM with TF-IDF provides the best overall method. This study shows TF-IDF modeling has better performance than Word2Vec modeling and this study improves classification performance results compared to previous studies.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Networks and Communications,Hardware and Architecture,Instrumentation,Information Systems,Control and Systems Engineering,Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3